數字示波器相比模擬示波器的優勢,具有采樣、數字化和存儲波形,助你測量、分析和存檔信號,波形回放等功能。但是數字示波器采樣過程中也會帶來很多問題。
主要影響測試結果的因素有這幾個混疊、同步采樣和插值器錯誤,除非你很清楚這些問題不然就是一個棘手的事情。很多廠商不會花費太多的時間用來討論這些不利負面的通病會忽略掉這幾個因素,因此我們要了解這些問題并且學會應對處理。下面就讓我們泰勤科技來與你分享交流看看如何的應對處理出現的問題。
根據所有數字儀器和系統都應遵循的采樣理論,對一個信號的采樣率必須超過該信號中所包含的最大頻率的兩倍。如果信號被正確采樣,示波器就可以從樣本中重建這個信號,不會損失任何信息。在欠采樣情況下,或者說采樣率小于信號最高頻率分量兩倍時,恢復出來的信號會含有低于原始信號的頻率成分,這種不想要的信號被稱為混疊信號。采樣率的一半被稱為奈奎斯特頻率,代表了可以按這個采樣率數字化的信號最高頻率。
圖1是信號混疊的一個例子。左側最上面的波形是一個以1GSamples/s速率采樣的400MHz正弦波。左側從上往下數第2張圖是水平方向放大了的信號,從中可以看到每個周期有2個樣本數。值得注意的是,這是沒有經過插值的原始采樣數據。左側第3張圖顯示的是經過Sin(x)/x插值后的信號。這是大多數數字示波器顯示的結果,因為這是它們默認的顯示插值器。
圖1:當一個400MHz信號被欠采樣時,它會丟失信號保真度并發生混疊現象。
左側最下面一張圖是輸入信號的快速傅里葉變換(FFT)結果,顯示了信號的頻譜或頻域圖。圖中顯示400MHz點有個頻譜峰值,與這個信號的頻域特性相符。
右側最上面那個波形是以500Msamples/s速率采樣的同一400MHz正弦波。采樣率低于信號頻率的兩倍,因此信號會出現混疊。右側從上往下數第2張圖是混疊后信號的放大圖。注意,信號頻率變低了,在這個例子中頻率100MHz。再下面一張圖是應用了插值的混疊后信號,混疊后信號的FFT結果中有一個100MHz的頻率峰值。需要注意的是,FFT曲線在250MHz頻率點(即500MS/s采樣速率的奈奎斯特頻率點)被截尾了。
因為圖1不是動圖,因此混疊后的波形看起來似乎有一個穩定的觸發信號,實際上并沒有。觸發電平被設為0V,正的斜率和非混疊波形展示了正確的觸發電平。混疊后的波形每隔一個非混疊波形采樣點才有一個采樣點,會在與觸發點相鄰的樣本點之間跳躍。這將生成具有水平“抖動”特性的曲線。